
+





NASA Contractor Report 4431

Flow Analysis and Design

Optimization Methods for

Nozzle Afterbody of a

Hypersonic Vehicle

Oktay Baysal

Old Dominion University

Norfolk, Virginia

Prepared for

Langley Research Center

under Grants NAG1-811 and NAG1-1188

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Program

1992





TABLE OF CONTENTS

o

2.

3.

4.

°

,

.

8.

9.

INTRODUCTION .................................. 1

ANALYSIS METHOD FOR AIR-AIR FLOW .................. 3

ANALYSIS METHOD FOR MULTISPECIES FLOW .............. 5

RESULTS OF FLOWFIELD ANALYSES .................... 9

4.1 Three-Dimensional Results ......................... 11

4.2 Two-Dimensional Results on Adaptive Grids .............. 13

AERODYNAMIC DESIGN OPTIMIZATION ................. 14

5.1 Sensitivity Coefficients .......................... 16

5.2 Flow Prediction Method .......................... 18

5.3 Sensitivity of the Optimum Design ................... 19

RESULTS OF DESIGN OPTIMIZATION .................... 20

6.1 Demonstration of Flow Prediction Method ............... 20

6.2 Shape Optimization of Nozzle-Afterbody ................ 22

REFERENCES ................................... 24

ACKNOWLEDGEMENT ............................. 26

FIGURES ...................................... 27

ill

PRECEDING PAGE BLANK NOT FILMED



LIST OF FIGURES

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

A schematic of the flowfield around a generic hypersonic vehicle.

A wind tunnel model of a single-module scramjet nozzle and afterbody: (a)

sectional view, (b) isometric view.

Three-dimensional grid for the computational model of the nozzle-afterbody.

The grid is made of eight blocks and 808,848 cells.

Mach number contours of the flow inside the rectangular duct preceding the

internal nozzle (Case 1).

Mach number contours of the external flow past the double corner preceding

the cowl and the external nozzle (Case 1).

Grids for two-dimensional computations with 20,305 cells: (a) fixed grid,

(b) flow adapted grid for Case 5.

Pitot pressure contours in the internal nozzle and ramp region for an r/-

constant plane (Case 1).

Mach contours for a (-constant plane of the nozzle-afterbody (Case 1).

Mach contours depicting various crossflow (_-constant) planes of the nozzle-

afterbody (Case 1).

Comparisons of computational and experimental [3] off-surface pitot pres-

sure (Case 1).

Comparisons of computational and experimental [2] surface pressure coef-

ficients (Case 1).

Mach number contours of Case 5 where the flow is overexpanded: (a)

solution on the fixed grid shown in Fig. 6a, (b) solution on the adapted grid

shown in Fig. 6b.

A flow adapted grid for a flow which is underexpanded (Cases 1-4).

Comparisons of computed (2-D) and experimental [2] surface pressures.

Global mass conservation error for Cases 2 and 4.

Local mass error due to mixing of species (Case 4).

iv



Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28

Contours of specific heat ratio: (a) Case 2, (b) Case 3.

Mass fraction contours of Case 3: (a) Freon-12, (b) Nitrogen.

Physical and geometrical formulation of the nozzle-afterbody optimization

problem.

Flowchart of the aerodynamic shape optimization method.

Flowchart of the sensitivity analysis (quasi-analytical) methods (pre-

optimization sensitivities).

Flowchart of the adjoint variable method to determine the sensitivity deriva-

tives (post-optimization sensitivities).

Description of the flowfield prediction problems.

Surface pressure coefficient distributions along the ramp for various deflec-

tion angles (Case 6-8).

Comparisons of density contours for 0 = 5 ° ramp deflection (Cases 7, 9

and 10).

Comparisons of final optimized ramp shapes (Case 6, 11, and 12).

(a) Mach contours of the initial ramp shape (Case 6).

(b) Mach contours of the optimized ramp shape (Case 6).

Optimization history of the objective function for Cases 6, 11, and 12.

V





Flow Analysis and Design Optimization Methods for

Nozzle Afterbody of a Hypersonic Vehicle

Oktay Baysal

Old Dominion University

Norfolk, Virginia

1. INTRODUCTION

The recent resurgence of interest in hypersonic aerodynamics has come about largely

in part due to the development of hypersonic vehicles, such as, the National Aerospace

Plane (NASP). The design of this type of aircraft will rely heavily on the use of

computational fluid dynamics, since the operating conditions prohibit the use of most of

the conventional experimental facilities to obtain the required data for design analysis.

One of the major design tasks involved in the development of a hypersonic air-

breathing aircraft is the integration of the engine and the airframe. This is necessary

in order to reduce excessive drag and weight due to the Mach numbers at which the

aircraft will be traveling. The high pressure combustion products are expanded through

the combustor exit nozzle and over the airframe afterbody configuration (Fig. 1). The

overall propulsive efficiency of the nozzle is determined, to a large extent, by the

exhaust plume flow over this afterbody section.

The design and testing of a scramjet nozzle-afterbody section using actual engine

combustion products is impractical in a conventional wind tunnel. The actual chemistry

and high total enthalpy levels of the exhaust products would be quite difficult to

match in a scaled test section. However, several alternatives do exist. A simulant

gas can be substituted for the actual combustion products, provided that dynamic and

thermodynamic similitude are enforced. Perhaps a more economical alternative would

be to do the preliminary design analysis using computational fluid dynamics (CFD).

Since there is currently very little experimental data for very high Mach number flows,

some means of calibrating and validating these CFD codes must be achieved before

they can be used with complete confidence in this design process.

In the 1970's, a study was undertaken to develop an experimental cold gas simula-

tion technique for scramjet exhaust flows [1]. It was determined that in addition to the

usual nondimensional similitude parameter requirements for inviscid flows (i.e., Mach



numbers,pressureratios, temperatureratios,etc.), that the ratio of specific heats(7)
of the combustionproductsmust also bematchedby the simulantgases.It wasalso
determinedin this studythat the surfacepressureswererelatively insensitiveto small
changesin the thermodynamicpropertiesof thegases,but werevery sensitiveto flow
perturbationscausedby the nozzle geometry.

An extensionof this work wascarriedout recently [2, 3]. A wind tunnel model
of a single-modulescramjetnozzle-afterbodyconfigurationwasconstructedfor testing
(Fig. 2). The simulantgasmixturewas fed into a high pressureplenumchambervia a
mountingstrut. The gasin this plenumchamberwasexpandedthrougha converging-
diverging supersonicnozzle to approximatelyMach 1.7 at the combustorexit plane,
where it was further expandedover the nozzle-afterbodysectionof the model. This
supersonicexhaustflow also encountereda hypersonic(Mach 6) freestreamair flow,
throughwhich mixing occurredin a freeshearlayer containingadditionalexpansions
andshockwaves.A removabletaperedflow fencewasusedto simulatea quasitwo-
dimensionalflow. When this fencewas removed,thenozzleflow alsomixed with the
hypersonicfreestreamin thelateraldirectionthrougha spanwiseexpansion,causingthe
flow to becomefully three-dimensional.Experimentaldatawasobtainedfor a scaled
scramjetnozzle-afterbodyflowfield using both air and a Freon/Argonmixture asthe
simulantgas. Static pressureswere measuredon theafterbodysurface,for both two-
dimensionaland three-dimensionalflows, with various nozzle-afterbodygeometries.
Also, by usinga flow rake specificallydesignedfor this purpose,the off-surfaceflow
wassurveyedto obtain thepitot pressures.The dataobtainedfrom theseexperiments
were usedto comparewith the presentcomputationalresults.

The design and analysisprocessesfor this type of nozzle-afterbodysection is
complexdueto thefact thatmanyadditionalparametersmustbeconsidered,in addition
to thosewhich mustbeaccountedfor in conventionalnozzles.This particularnozzleis
highly asymmetric,andconsistsof an internalandanexternalportion. The forcesand
momentsgeneratedby most conventionalnozzlescanbe determinedby analyzingthe
flow up to thenozzleexit planeonly. In this particularcase,the analysismustextend
further downstreamdue to the fact that the lower aft portion of theaircraft forms the
externalportionof the nozzle.The flow over this afterbodyregion is expectedto have
a dramaticeffect on the thrust vector and pitching momentgeneratedby the engine
module.

In the presentstudy, a simplified configuration(Fig. 3) is assumedto model the
single-modulescramjetnozzle-afterbody. A rectangularduct precedesthe internal
nozzle. The externalpart of the nozzle is boundedby a ramp, a side ramp and a
vertical reflectionplate. The externalhypersonicflow is initially over a double-corner
formedby thereflectionplate,the top surfaceof the nozzle,the exterior of the nozzle
sidewall,anda sideflat plate. Both of theflowsexpandover the20° rampandthe side
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ramp. The supersonic jet expands in the axial, the normal, and the spanwise directions

after it clears the nozzle exit plane. A three-dimensional shear layer structure forms

between these coftowing turbulent streams which are at a different speeds.

In this chapter, the computational methods developed for the flow analysis and the

design of the aforementioned nozzle-afterbody are discussed. The three-dimensional

analysis method for the air-air (simulant gas is air) flow is given in the next section.

A two-dimensional, multispecies flow model is developed for the flow of Argon-Freon

mixing with air, which is explained in Section 3. The results of the flow analyses are

presented in Section 4. Further details of these flow analysis methods and the results

obtained using them may be found in [4-9]. The last two sections are dedicated to the

design optimization of the nozzle-afterbody. The methodology is described in Section

5 and some sample results are included in Section 6. More comprehensive discussion

of this design optimization method may be found in [10-13].

2. ANALYSIS METHOD FOR AIR-AIR FLOW

The conservative form of the nondimensional, unsteady, compressible, Reynolds-

averaged, complete Navier-Stokes equations are written below in generalized curvilinear

coordinates,

+(O-T + /_ -/_v)m = O; m = 1,2,3 (2.1)

where

_) = [p, puj, pu2, pu3, pe]T / J (2.2)

The symbols t, p, ui, e denote the time, the density, the Cartesian velocity components

and the total energy, respectively. The inviscid fluxes, viscous fluxes, and the coordinate

transformation jacobian are denoted by E, Ev, and J, respectively. The state equations

are written assuming air to be a perfect gas. Molecular viscosity is calculated using the

Sutherland's law and the Stoke's hypothesis.

A finite volume differencing is formulated by integrating the conservation equations

over a stationary control volume,

where fi is the unit normal vector pointing outward from the surface S bounding

the volume f_. This implicit and second-order accurate method is described in [14,

15]. The flux-difference splitting [16] is used to construct the upwind differences for

the convective and pressure terms. Spatial derivatives are written conservatively as

flux balances across the cell. The Roe-averaged cell interface values of fluxes are

evaluated after a state variable interpolation where the primitive variables are used.



The diffusion terms are centrally differenced. Spatial approximatefactorizationand
Euler backwardintegrationafter linearizationin time, result in the solution through
5x 5 block-tridiagonalmatrix inversionsin eachof the threedirections.

Themodelingof thestressesresultingfrom theReynoldsaveragingof the governing

equations is complicated by the fact that several length scales exist which control the

generation, transport, and dissipation of turbulent kinetic energy. Therefore, the standard

two-layer algebraic turbulence model of Baldwin and Lomax [17] is modified and used

herein. It is based on the Boussinesq approximation of modeling the Reynolds stresses

by an eddy viscosity, c. That is, the Reynolds stresses and heat fluxes are assumed

proportional to the laminar stress tensor with the coefficient of proportionality defined

as the eddy viscosity coefficient.

Three specific modifications have been made to the standard Baldwin-Lomax model

to account for: (a) vortex-boundary layer interaction and separation, (b) presence of

multiple walls, and (c) turbulent memory effects in addition to the local equilibrium for

the shear layer. The details of these modifications are given in [9].

The computational domain (11.1 in. by 8.1 in. by 6.6 in.) consists of the region

above the cowl and to the fight of the side wall where the flow is hypersonic, and another

region bounded by the lower surface of the cowl and the ramp, where the supersonic

internal nozzle flow expands (Fig. 3). The global grid, which consists of 808,848 ceils,

is block-structured with eight subdomains in order to ease the grid generation [8, 9]. The

grid lines are contiguous across the block interfaces, where the solutions are matched

with flux conservation. The step sizes normal to the wall vary in the range of 10 -5 to

10-4 with respect to the throat height. The grid is also longitudinally clustered around

the comers inside the nozzle, where the expansions occur. The step sizes for the shear

layer vary from 10-4 to 10-3 with respect to the ramp length in the (-direction.

The upstream boundaries for the external and internal regions require specifying

a viscous, double-corner flow (Fig. 4) profile and a viscous, duct (Fig. 5) profile,

respectively [8, 9]. Generating such profiles requires solving the three-dimensional

compressible Navier-Stokes equations. The boundary layer thickness of the final cross-

plane profile of the duct flow, which is used as the upstream boundary condition for the

nozzle, is approximately 0.072 in. on all four walls (Fig. 4). In addition to the boundary

layer growth on the walls and in the comer regions of the external double-comer, the

interaction of the two co-flowing hypersonic flows are computationally captured (Fig. 5).

No slip, impermeability, adiabatic, and zero-normal-gradient of pressure conditions

are imposed on all solid surfaces. First-order extrapolation for the conserved variables

are used at the downstream boundary. The outer boundary conditions are specified after
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checkingthe signof thenormalcontravariantvelocity; extrapolationis usedif theflow
is outwardand freestreamvaluesare usedif theflow is inward.

The solution is obtainedon two coarserlevel grids, and finally the finest grid, in
an attemptto overcomethe initial numericaltransients.This approachis commonly
knownasmeshsequencing[14]. Theresidualandthenormalforcehistoriesareusedto
determinethe solutionconvergence.The convergenceis deemedto be achievedwhen
theresidual is decreasedby four ordersof magnitude.An examinationof the normal
force coefficient, CN, reveals an asymptotic approach to a constant value after 1500

work units. A work unit corresponds to the amount of iterations on any combination

of coarse or fine grids, which requires the same amount of computer time necessary to

perform one iteration on the finest grid [14]. The solution is terminated at approximately

2300 work units, in which 300 work units are performed on coarser levels. This amounts

to roughly 30 hours on the CRAY-2 of NASA Langley Research Center.

3. ANALYSIS METHOD FOR MULTISPECIES FLOW

This method requires solving more equations than the method for the air flow due

to the multispecies gases. Therefore, it is shown here in two-dimensions for brevity and

computational time savings. Extending it to three-dimensions is rather straightforward.

The conservation form of the two-dimensional, Reynolds-averaged Navier-Stokes

equations for unsteady, compressible flows of multispecies fluids is being solved. The

nondimensional indicial form (i and j are dummy indices) of these equations in the

Cartesian coordinates is given by

9_) O Ei
-- + - O; i = 1,2 (3.1)
9t OXi

where

= [fl, flZti, fie, flfs]T; 8 = 1,2,..., N - 1 (3.2)

Ei = [pui, puiuj + 6ijp - rij, (pc + p)ui - uirij +ili, puif_ + DMTFi]T; j = 1,2

(3.3)

The mass fraction and pressure are denoted by f and p, respectively. N is the number

of species and indices r and s indicate species. The expressions for the shear stresses

and the heat flux are given as

Tij -- [Z. C_ggj -t- 't-._OXjj_ij (3.4)

(3.5)



Prandtl, Mach, and Reynolds numbers are denoted by Pr, M, and Re, respectively.

First and second viscosity coefficients are shown by # and A. T denotes the temperature

and subscript (t) denotes a turbulent quantity. Cp is the specific heat. In the above

system, all the gases are assumed to be thermally perfect but calorically real gases.

Hence, the enthalpy (h) of each species (s), the total energy, and the pressure can be

expressed as:

fo Th_ = h ° + Cp_dT (3.6)

1
e = hsf_ - p- + -_(uiui) (3.7)

P

The enthalpy of formation, universal gas constant, and molecular weight are denoted

by h °, R, and w, respectively. The terms DMTFi and DMTEi in Eqs. (3.3) and (3.5)

account for the diffusive mass transfer. The expressions for these terms depend on the

utilized diffusion model. In case of using Fick's law, these terms take the form

oL
DMTFi = -pD Ozi (3.9)

N

= -_j-_pDhs_-_. (3.10)DMTEi
_Ja_ z

s:l

The diffusion coefficient is denoted by D. When using a reduced form of the multicom-

ponent diffusion equation [18] derived from the complete kinetic theory to determine

the diffusion velocity components, these terms take the form

DMTFi = p_tirfs_rs r = 1, 2,..., N (3.11)

N

DMTEi = Z Phsfs_tis

s=l

The diffusion velocity components are denoted by ft.

multicomponent diffusion equation is

(3.12)

The reduced form of the

(3.13)



and

Dr, = O'O01858_/T3[(Wr + Ws)/(WrWs)] (3.14)
P_sflrs

Eq. (3.13) is based on the assumptions that there is no thermal diffusion and that the

same body force per unit mass is acting upon each species. X, a, and fl denote the

species mole fraction, effective collision diameter, and collision integral, respectively.

Since for most turbulent mixing problems the Lewis number, which is the ratio of

the Prandtl and Schmidt (Sc) numbers, is approximately unity, the expression for the

effective diffusion coefficient is given by

pD = Drs + (3.15)

In Eq. (3.15), Drs can be found from Eq. (3.14) when using the multicomponent diffu-

sion model, or from the relation (pDrs = ff/Sc) when using Fick's law by specifying

the Schmidt number (Sc = 0.22).

To calculate the required thermodynamic quantities, the specific heat for each species

is defined by a fourth-order polynomial in temperature, whose coefficients are found by

a curve fit to the available data. The molecular viscosity and the thermal conductivity

coefficients for each species are computed from Sutherland's formula. Their values for

a mixture of gases are determined from Wilke's law as follows,

s=l r=l
r:_s

(3.16)

where

[1 + (ffs/fr)l/2(Wr/ws)l/4] 2
¢,-s = (3.17)

4g [1+ (w,/wr)]l/2
Further details of determining the binary diffusion coefficients, Sutherland constants,

and the coefficients of the polynomials for the specific heat of each species are given

in [4, 5].

For a two-dimensional mixing flow of N species, there are (N- 1) species continuity

equations along with the global continuity equation, two momentum equations, and the

energy equation. The mass fraction of the Nth species, fN, can be found from the

following identity

N

s=l

= 1 (3.18)
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Therefore, (N + 3) coupled partial differential equations [Eq. (3.1)] need to be solved

for the vector of conserved quantities [Eq. (3.2)]. However, in an attempt to compute

the global mass conservation error, the computations are repeated by solving N species

continuity equations, that is, a total of (N + 4) coupled equations.

The explicit MacCormack [19] algorithm is used to solve the governing equations.

The present implementation of this well-documented [20, 21] predictor-corrector scheme

is based on the finite difference discretization. The type of differencing is alternated

at every other time step for symmetric computations. The stress terms [Eq. (3.4)]

are differenced in the direction opposite to those of the fluxes. The scheme is only

conditionally stable and is second-order accurate both temporally and spatially. Fourth-

order damping terms are added for shock capturing.

The diffusion velocities I) are calculated using two different models, which are

the complete multicomponent diffusive interaction model, and the simple binary inter-

action model. In the binary model, mass diffusivities of all the species are assumed

identical, and only concentration gradient effects are included [Eqs. (3.9) and (3.10)].

Whereas in the complete multicomponent model, the mass diffusivity of each species is

computed using Eq. (3.14). Then, the diffusion velocity of each species is determined

from Eq. (3.13), which requires solving (N) simultaneous algebraic equations for each

component of the velocity. It should be noted that for N species, however, the system

of N equations defined by Eq. (3.13) is not linearly independent. Therefore, one of the

equations must be replaced by the following constraint

N

.s=l

= 0 (3.19)

The resulting system of algebraic equations is solved using a lower-upper (LU) decom-

position method. When solving (N) species continuity equations, this model [Eqs. (3.11-

3.14)] cannot be applied, because Eqs. (3.18) and (3.19) can no longer be satisfied in

an exact manner due to the computational error.

The local mass error, LME, distribution due to the modeling of the multispecies

mixing is computed from the formula below, which is evaluated at every grid point

N

LME = p - (3.20)
,s=l

The global mass conservation error is also computed by numerically integrating the

mass along the computational domain boundaries.

The two-dimensional computational domain includes a region above the cowl where

the flow is hypersonic. The rest of the computational domain is bounded by the lower
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surfaceof thecowl andtheramp,wherethe supersonicflow throughtheinternalnozzle
expands(Fig. 6). This computationaldomainis selected to be (18.5 h by 14 h), where h

is the throat height, and it corresponds to the longitudinal plane located at the half-span

of the internal nozzle (Fig. 3). The cowl and the ramp angles are 12 deg and 20 deg,

respectively. A fixed, boundary fitted grid is generated with appropriate clustering in

the regions where high-flow gradients are expected. The global grid, which consists

of 8,839 cells, is divided into four blocks. The grid lines are contiguous across the

block interfaces, where the solutions from each side of the interface are matched. In

the normal direction, the cowl separates blocks 1 and 2, and a horizontal line extending

from the cowl tip to the downstream separates blocks 3 and 4. In the streamwise

direction, the normal line at the cowl tip separates blocks 1 and 3, and blocks 2 and

4. This multiblock approach of domain decomposition alleviates the numerical errors

that might occur if the boundaries and the interior of the cowl were included in the

computational grids [4].

The governing equations are initially solved on this fixed grid until the global error

is reduced by about 2 orders of magnitude. Then the grid is adapted to the current local

flowfield solution using the two-dimensional spring-analogy approach of [22]. This grid

adaptation procedure enhances the solution by reducing the global error by another 2

orders of magnitude.

The adaptation is done as a sequence of one-dimensional operations. For example,

the operation starts in the _ direction by redistributing the grid points according to a

specified weighting function starting from the _" = 0 line to the C = _max line. Then

the process is repeated in the _ direction on the _ fines. The weighting function, in

the present study, is derived from the gradient of the composite function, [0.5 p + 0.3

u + 0.2 "7], a specified minimum step size, and a specified maximum step size. The _

direction adaptations are performed separately for the region above the cowl (blocks 1

and 3) and the region below the cowl (blocks 2 and 4). The _ direction adaptations are

also performed separately, first for block 1, then for block 2, and finally for blocks 3 and

4 together. At the end, all these separate parts are blended together by the adaptations

applied only to the block interfaces. This practice ensures maintaining the original

shape of the cowl and the block interfaces. Further details of this flow-adaptive grid

scheme, including the necessary equations, are given in [22] and its implementation is

described in [5, 6].

4. RESULTS OF FLOWFIELD ANALYSES

The upstream conditions of the nozzle exhaust flow and the external flow are given

in Table 4.1. All of the flows are considered to be fully turbulent. Only case 1 assumes

the exhaust gases to be air. The cold gas simulating the exhaust gases is the Freon-

12-argon mixture for cases 2-5. Presented in Table 4.2 are the computational models
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for these cases. Only case 1 is computed both in two-dimensions and three-dimensions.

The computations for the other cases are in two-dimensions. Cases 1 and 5 assume

homogenous composition of the fluids everywhere and at all times. Therefore, the

species continuity equations and the terms representing the multispecies mixing are not

used for cases 1 and 5. Computed in cases 2-4 are the mixing of four species, namely,

nitrogen, oxygen, Freon-12, and argon. The diffusive mass transport model derived

from the complete kinetic theory is used in case 3, but the binary diffusion model is

used in cases 2 and 4. Only case 4 does not assume that the sum of mass ratios of

all the species is unity (Eq. 3.18).

The internal geometry for the supersonic nozzle features two corners -- a lower

corner at the beginning of the ramp and an upper corner upstream of the cowl tip.

Two centered expansion fans develop around these corners. These two expansion fans

smoothly converge at the upper corner and then propagate out into the jet plume flow.

As the flow clears the internal nozzle-exit plane, two conditions can exist. When the

jet static pressure is greater than the external freestream static pressure, the jet flow

is underexpanded (Cases 1-4). When the static pressure of the jet is less than the

freestream static pressure, the jet flow is overexpanded (Case 5).

Table 4.1 Flow conditions at upstream of computational domain

Reynolds Total Total

Fluid (by Mach No. based temp. pressure

Case Flow volume) No. on (h) (°K) (kPa)

1 Nozzle Air: 1.7 192,000 475 166.0

throat 79% N2

21% 02

2-5 Nozzle 50% 1.7 7500 467 172.4

throat Freon- 12

50%

Argon

1-4 External Air: 6.0 346,000 478 2517.0

flow 79% N2

21% 02

5 External 50% 1.7 7500 467 172.4

flow Freon 12

50%

Argon
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Table 4.2 Computational mixing models

Case

No. of partial

Specific heat differential

Multispecies ratio Diffusive mass equations

mass transport function of transport model solved

1 No Temperature -- 4(2-D) or

5(3-D)

2 Yes Temperature, Eqs. (3.9-3.10) 4 + 3

Composition

3 Yes Temperature, Eqs. (3.11-3.14) 4 + 3

Composition

4 Yes Temperature, Eqs. (3.9-3.10) 4 + 4

Composition

5 No Temperature -- 4

4.1 Three-Dimensional Results:

The three-dimensional results obtained for Case 1 are shown in Figs. 7 through 11.

The pitot pressure contours for an 71--constant plane, located at 1.5 in. from the reflection

plate, are shown in Fig. 7. Just upstream of the cowl tip, a 0.53 in. thick boundary layer

is formed for the external flow. The supersonic-hypersonic mixing of air forms a shear

layer downstream of the cowl tip. This shear layer behaves like an extension of the cowl

and the flow continues to expand between the ramp and the shear layer. Two centered

expansion fans develop around the corners inside the nozzle. A small plume shock,

caused by the high-pressure expanding jet interacting with the low pressure external

flow, forms at the cowl tip and deflects downward at about -10 °. This shock can induce

separation in the region of the cowl tip. The extent of this separation (when it exists) is

highly dependent on the plume shock strength. The jet also expands in the streamwise

direction. The flowfield along the ramp and side ramp contains expansion waves.

The same type of flow features are present in the spanwise direction and the jet

laterally expands out into the freestream. A shear layer develops between the high-

pressure, low-speed jet and the low-pressure, high-speed external flow. This leads to a

plume shock as the hypersonic external flow is slowed down by the expanded jet plume.

Shown in Fig. 8 are the Mach contours for a C-constant plane (approximately parallel

to the ramp at 0.3 in.) of the afterbody configuration, where the nozzle, the ramp, and

the side ramp are observed. The jet expands downstream of the nozzle, and the highly

expanded lateral jet plume is clearly seen. A much thicker boundary layer develops at

the side wall in comparison to the one seen in the normal direction. The higher-pressure

jet causes the external hypersonic flow, approaching the nozzle exit plane, to experience
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a plume shock.As a result of the spanwiseexpansionof the jet and this plume shock,

a flow separation is started, and it propagates spanwise along the side ramp.

A more comprehensive view of the afterbody flowfield is shown through its

crossflow Mach contours in Fig. 9. Expansion is seen in normal, spanwise, and

streamwise directions. The growths of turbulent boundary layers on the reflection plate,

ramp, and side ramp are evident. The exiting jet transforms from a rectangular shape at

the nozzle exit plane to an enlarged elliptical plume as the flow propagates downstream.

Obviously, this affects the shape of the resulting three-dimensional shear layer.

Computational off-surface pitot pressure, Pp, values are compared with the exper-

imental results [3] in Fig. 10. Four separate rake stations (Station 1 is located at the

nozzle exit plane), each containing 25 pitot tubes, are placed at midspan on the ramp.

Here, (L) denotes the length of the rake measured approximately normal from the ramp

surface, and (s) denotes the tangential distance along the ramp surface, measured from

the 20 ° ramp corner. The numerical simulation of the shear layer is accomplished with

some deviations seen in the high peak values of Stations 2, 3 and 4 located at s=3.5 in,

4.54 in, and 5.54 in, respectively. According to the experimental results, a compression

wave forms at the cowl tip and extends to the third rake station at approximately -10%

The effect of this shock is seen both experimentally and computationally in the low

peak values. Computational results follow the experimental trend for the shock with

some deviation in location and strength. Station 3 reveals the largest discrepancy.

Comparisons of the computational and experimental [2] surface pressure coefficients

on the ramp and side ramp are shown in Fig. 11. Pressure values are plotted at five

spanwise locations. The first three stations (located on the ramp), which are downstream

of the nozzle exit plane, exhibit high initial Cp values before gradually declining as the

flow continues to expand down the ramp. The Cp distributions on the side ramp 0/=3.50

in. and 71=4.25 in.) are relatively constant and predict slightly lower Cp values than the

final Cp value attained on the ramp. This is due to the greater spanwise expansion on the

side ramp. All of the computed Cp values compare very well with their experimental
values.

Discrepancies between the computational and the experimental results can be

attributed mainly to the grid, the turbulence model, and the uncertainties associated

with the wind tunnel data. Some improvement is possible by using a more refined

initial grid followed by adapting the grid to the flow solution as it develops. Also, the

boundary layer thickness used at the upstream of the internal nozzle flow (0.072 in.)

is only assumed to be approximating the experiment, since boundary layer thicknesses

were not measured during the wind tunnel tests [2, 3].
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4.2 Two-Dimensional Results on Adaptive Grids

An overexpanded flow case is designed to check the solution method on adaptive

grids (case 5). The fluid is a mixture of 72% Freon-12 and 28% Argon, by mass

(46%-54%, by volume). This mixture is assumed to retain its composition uniformly

everywhere, thence the computations are for the constant specific heat ratio of 7=1.214.

The converged solution is obtained on the second flow-adapted grid shown in Fig. 6b.

Shown in Fig. 12 are the Mach contours. The jet at the cowl tip plane is overexpanded,

which results in a shock, with a pressure ratio of 2.7, impinging on the ramp. A

separation bubble and a reflected weaker shock are observed. The interaction of the

internal and external flows is through two expansions which emanate from the cowl tip

region. The top expansion is a fan pointed upward with an included angle of about 55 °.

The lower expansion is directed inward interacting with the reflected shock towards the

downstream, where the ratio of pressure to that of throat is 0.3. A small separation

zone is also detected at the upper cowl tip.

In the remainder of this section, the multispecies flow computations, i.e. cases 2-4,

will be discussed. Shown in Fig. 13 is a representative flow adaptive grid used for these

cases. Presented in Fig. 14 are the computed and experimentally measured [2] pressure

distributions on the ramp surface. All pressures are normalized with the pertinent

pressure values at the upstream comer. The rate of expansion of airflow (case 1) is

much higher than that of Freon-argon mixture (cases 2-4) at the comer. The difference

between the expansion rates gradually decreases, but the pressure ratios of Freon-argon

mixture are consistently higher than those of air. The computed pressure values from

cases 2-4 are very close to each other. In comparison with the experimental data,

they are initially slightly lower, then slightly higher. The computed values of surface

pressures for the air expansion (case 1) are also slightly lower than the experimental

values, but they match almost identically down the ramp.

In an attempt to assess the error associated with the assumption that the sum of

computationally obtained species mass ratios is unity (Eq. 3.18), the mass deficits of

cases 2 and 4 are computed (Fig. 15). The mass deficit is defined herein as the difference

between the numerically integrated outftux and influx of mass through the boundaries

of the computational domain. The solutions of cases 2 and 4 show convergence in

about 4000 iterations (pseudo-time steps). The mass deficit is less than 1% for case

2, where the sum of the mass ratios is assumed to be unity. This is a commonly

used assumption in similar mixing, multispecies computations, such as [20]. When

this assumption is not made, and consequently four species continuity equations are

solved for four species (case 4), the mass deficit is about 8%. A further analysis is

performed in order to find multispecies mixing (Eq. 3.20) and the results are plotted in

Fig. 16. This error, of course, is identically zero for the other cases. This mass error is

occurring, as expected, within the shear layer, where the mixing takes place. It grows

in the downstream direction to a maximum of 1%.
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Thecontoursof thespecificheatratio ('7)areplottedin Fig. 17. It variesthroughout
theflowfield asafunctionof temperatureandlocalgascomposition.In case1, however,
thevariationof 3' is only dueto temperature.Thevaluesof 3'changein the streamwise
directionandthenormaldirection,with the largegradientsbeingin theshear-layerand
boundary-layerregions.Effectsof thediffusive masstransportmodelscanbeobserved
by comparingFigs. 17aand 17b.Themodelderivedfrom thecompletekinetic theory
(case3), producessmoothershearlayerandboundarylayers.Thebinary model (cases
2 and 4), producesmore oscillations,with quantitativeresults varying by about 2%.
Theseoscillationsexist despitethe apparentconvergedsolutionof case2 asindicated
by anexaminationof Fig. 15.Therefore,theextracomputationalcostof themodelused
in case3 may be justified if betteraccuracyandoscillation-freesolutionsaredesired.
It shouldbe pointedout that the flows underconsiderationare turbulent,high-speed
flows. The differencesin the resultsfrom thesetwo modelsareexpectedto be more
pronouncedfor laminar, low-speedflows.

The massfraction contoursfor Freon-12and nitrogenareshownin Fig. 18. The
fluid compositionat theedgesof the shearlayer is slightly different from its upstream
mixtures. There is a very large gradientof mixture compositionthrough the shear
layer. SomeFreon-12and argonmixture is entrainedupstreamwith the reversedflow
on the uppersurfaceof the cowl. WhenFigs. 17and 18are inspectedtogether,it is
observedthat the major causefor thevariationof '7 in the shear layer is the change in

the composition of the multispecies fluid. In other regions, such as near the walls, the

variation of 7 is primarily due to temperature gradients.

5. AERODYNAMIC DESIGN OPTIMIZATION

In the previous sections, flow analysis methods and their results were presented.

These are prerequisites to a design process, which is explained in this section. As it will

become obvious, this process is relatively more expensive in terms of computations.

Therefore, it will be demonstrated only in two-dimensions and using the inviscid flow

equations for the air flow (Euler equations). Its extension to three-dimensional, viscous,

multispecies flows is straightforward, but computations are certainly more costly.

It is desired to determine the nozzle ramp shape which yields a maximum axial

thrust force coefficient, F, subject to constraints, Gj (Fig. 19). There are a number of

ways to choose the design variables [12]. Two of them are presented here: surface grid

and Bezier polynomials [23]. Since the surface grid for the inviscid analysis contains

47 points from the corner to the tip of the ramp, and the local slope at each grid rather

than its coordinates are used as the design variables, the number of design variables

(NDV) is 47 for the first choice. For the second choice, six control points are chosen

for the Bezier polynomials. Hence, NDV is 6 for this option.
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Mathematically,it is requiredto get

subject to

Gj(Q(J(D),XD) < O, j = 1,NCON

(5.1)

(5.2)

XD, .... _ 2 D __ XD,,pp. _ (5.3)

where NCON is the number of constraints, and (_ is the vector of the conserved

variables of the fluid flow. )?D, .... and JfDupp._ are the lower and the upper bounds

of the design variables.

The component of the axial thrust force due to nozzle wall shape, Faxial, is obtained

numerically by integrating the pressure, P, over the ramp and cowl surfaces. Then it

is normalized by the force associated with the inflow, which is parallel to the cowl

surface. For a constant inflow Mach number, Mth, the inflow force is centered at the

mid-point of the line segment kc and its value is

Fi,flow = Pth(1 + _/mzth)h (5.4)

where h is the throat (th) height and "7 is the ratio of the specific heats. By definition,

the axial thrust force coefficient, F, is given in [11] as,

Fin flow Fin flow

This axial thrust force coefficient is subject to three physical constraints. The first

constraint requires that the static pressure at the ramp tip, Pl, reaches a percentage of

the free stream static pressure, P_, such that maximum expansion over the ramp is

reached without any reverse flow. The second and third constraints require that the

static pressure at the cowl tip, Pn, should be within specified limits of the free stream

static pressure, such that expansion waves emanating from the ramp initial expansion

do not induce any reverse flow on either the internal or external cowl surfaces.

In addition to the physical constraints stated above, there are geometrical constraints

on the configuration (Fig. 19). In order to maintain the total length of the aircraft as a

constant, the axial length of the ramp is fixed. Also, in order to maintain an acceptably

smooth aerodynamic surface shape, upper and lower limits are imposed on the local

surface coordinates, local slopes, and the Bezier control points relative to their neighbors.
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This nonlinear, constrainedoptimization problem is solved using the modified
feasibledirectionsmethoddevelopedby Vanderplaats(Ref. 24). Given a setof initial
valuesfor the designvariables,the methodfirst drives all the designvariablesinto a
feasibledesignspace,i.e., the spacewherenoneof thedesignconstraintsareviolated.
Then theoptimumdesignis methodicallysearchedfor within this space.This searchis
controlledby searchdirectionswhich arebasedon theobjectivefunction gradientand,
therefore,efficiently guidesthesucceedingcalculationstowardsincrementallyimproved
designs. Since this optimizationprocessrequiresmany evaluationsof the objective
function andconstraintsbeforeanoptimumdesignis reached,the processcanbevery
expensiveif a CFD analysiswereperformedfor eachevaluation.In the presentstudy,
however,thehigher fidelity flow predictionmethod(approximateflow analysis),which
is explainedin Section5.2, is performedduring the one-dimensionalsearchesof the
optimizationprocess.A completeCFD analysisis performedonly whennew gradients
of theconstraintsandthe objectivefunction areneeded,i.e. whenthe designchanges
substantially.A flowchartof this overalldesignprocessis presentedin Fig. 20.

5.1 Sensitivity Coefficients

The derivatives of the objective function, F, and constraints, Gj, with respect to the

design variables, ._:D, are defined as the sensitivity coefficients,

dF OF ( OF'_ T
VF- a2o - OXo + \0-@ "--

0c, {0cj) 00
vcj - = o--xv+ \ oo J  -Uv

OQ (5.6)
020

j = 1, NCON (5.7)

These derivatives have been determined in Ref. 10 for a case with two design

variables (the inclination angles of the flat ramp and cowl surfaces to the horizontal) and

three constraint functions using two approaches; namely, the finite difference approach

and the quasi-analytical or sensitivity analysis approach. The sensitivity analysis can

be performed by one of two methods; either the direct method or the adjoint variable

method (Fig. 21). It is reported in [10] that if the number of design variables (NDV)is

greater than the number of adjoint vectors (NCON+I), the adjoint variable method is

more efficient than the direct method. Since, in the present study, the number of design

variables, J(O, (47 or 6) is greater than the number of adjoint vectors (NCON + 1 = 4),

the adjoint variable method is selected to determine the sensitivity coefficients.

The governing equations for a two-dimensional, steady, compressible, inviscid flow

of an ideal gas with constant specific heat ratios written in the residual vector form are,

oi oo
= + = 0 (5.8)
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where f and _ are the flux Jacobians in generalized coordinates ((, (). These equations

can be obtained by eliminating all the viscous and the mass diffusion terms in the

Navier-Stokes equations for the multispecies flow given in Section 3. Equation (5.8)

may be solved by two different methods for the analysis and the simulation of the

flowfield. The first method is the approximately factored (AF) method (Eq. 2.4), which

is explained in Section 2 and in [14-16]. The second method is using the Newton's

method [25] to solve Eq. (5.8) directly. As it will be discussed in Section 6, this direct

method is more efficient than the approximately factored method.

The sensitivity analysis approach [10] begins by differentiating Eq. (5.8) with

respect to the design variables to yield the sensitivity equation,

(5.9)

This equation is solved for {8_)/OArD}. It should be noted that Eq. (5.9) needs

to be solved for each design variable, XD; however, the coefficient matrix [0/_/0Q]

needs to be factorized once and for all. The remaining partial derivatives in Eqs. (5.6)

and (5.7) can be evaluated analytically using the equations of the objective function and

the constraints. The final step is determining the values of VF and _TGj.

At this point, the adjoint variable method diverges from the direct method. First,

Eq. (5.9) is substituted into Eqs. (5.6) and (5.7). Then, the vectors of adjoint variables

(A1, A2j) are defined to satisfy the following equations,

OF
JfA1-- _ (5.10)

a_g

j = 1,NCON (5.11)

where jT = [0[_/00] r. The adjoint variable method requires the solution of

Eqs. (5.10) and (5.11) for the adjoint variable vectors, and then, upon substitution

into Eqs. (5.6) and (5.7), yields the derivatives of F and Gj. It should be noticed that

Eqs. (5.10) and (5.11) are independent of any differentiation with respect to ){O; hence,

the vectors Aa and A2j remain the same for all the elements of the vectors )(D.

Various methods can be used to solve the rather large sets of algebraic equations

resulting from Eqs. (5.9) or (5.10-5.11). Details and comparisons of these methods

(banded method, sparse method, iterative method, etc.) are given in [10-13].
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5.2 Flow Prediction Method

An approximate flow analysis method has been introduced in [10-13] to predict a

flowfield solution of a perturbed shape (XD + A){D) using the flowfield solution of an

initially unperturbed shape ()f_)). This method is based on a Taylor series expansion

of the vector of conserved variables Q(X* o + AXD) about Q(X_)) and requires the

substitution of Eq. (5.9) into the Taylor expansion:

[* -* an(0( b),2b) t,xD
(Q(XD),XD)/'O:-

(_Q OXD
(5.12)

where
-- --lit

AQ = Q(X D + A_'D) - Q(XD) (5.13)

Equation (5.13) explicitly gives the changes in (_ due to the changes in A.,_ D. From

here on, the term prediction is used when the flowfield is predicted using Eq. (5.13), and

the term analysis is used when the complete governing equations (Eq. 5.8) are solved

with the CFD algorithms described in Sections 2 and 3.

The next logical step in the prediction method is to extend the idea of prediction

based on analysis to that of prediction based on prediction. Performing a parallel

operation to that of Eq. (5.12), we obtain a second level fiowfield prediction analogous

to Eq. (5.13) by

(5.14)

)where Q X D -t- Z2x_"D(1) is obtained by Eq. (5.13). It should be noted that O0/Of(, D

Eq. (5.14) is based on the predicted flowfield _)(){_) + A_'(_)). This procedurein

allows flowfield solutions to be progressively "built up" from previous predictions; all

of which have the common genesis of a single initial CFD analysis solution. Thus,

a flowfield solution for a complex final shape may be obtained through incrementally

additive design variable perturbations. Otherwise, a grossly erroneous prediction is

produced if an equivalent single large perturbation is attempted.

Due to the truncation error of the first-order Taylor series, the flow prediction

is currently less accurate than the flow analysis. However, solving flowfield predic-

tion Eq. (5.12) costs only a small fraction of solving Eq. (5.8), since (0/_/0Q) and

(O[_/Of(O) are already assembled in solving the sensitivity equation (Eq. (5.9)). There-

fore, for relatively small values of AXD, significant time savings are realized at the

expense of some accuracy.
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5.3 Sensitivity of the Optimum Design

After the optimum design is obtained, it is desirable to determine the sensitivity

of the optimum design with respect to the problem parameters. Such information is

useful to perform trade-off analyses. For example, it may be wished to estimate what

effect a specified increase in the free stream Mach number has on the optimum thrust.

Mathematically, this requires the derivatives of the optimum values of the objective

function and the corresponding design variables with respect to the problem parameters.

The first-order sensitivity derivative method developed in [26] is adapted for the

present study. Presented in Fig. 22 is the flowchart of this process. The vector /5

contains the problem parameters, which are held fixed during the optimization. Using

the superscript "op" to denote the optimum quantities, the dependence of F °p and

on _"D and /5 can be written as

= - - opeop FOp(Q(XD(p),p),x;p(p),p) (5.15)

- L,.op
0,_ = G,_ (Q(X D (/5), P),XD p (/5),/5) = 0 (5.16)

where Ga is a vector containing only the active constraints at the constrained maximum.

A constraint becomes an active one when its value is zero. The total optimum sensitivity

derivative of the objective function with respect to a problem parameter P is obtained

using the chain rule of differentiation. Any perturbation of the parameter P about

its value at the initial optimum must be such that the originally active constraints

remain active. For this constrained optimization problem, the first-order optimality

conditions at a local optimum (commonly known as Kuhn-Tucker conditions [27]) are

used. Combining the equations for the gradient of the objective function and the active

constraints, and using the Kuhn-Tucker conditions result in,

dFOp Ofop _TIO_a [ (OFOp _ T _T (Oe_a) T] O0

dP - OP + _ + L \--if-Q-'] + \ OQ / ] -OP (5.17)

where _ is a vector containing the Lagrangian multipliers. The derivatives of the

conserved variables vector, 0, with respect to the problem parameters are obtained

from the following relation,

p),x.(p),/5) = 0 (5.18)

Differentiation of Eq. (5.18) with respect to the problem parameters and using Eq. (5.9)

results in,

[0 ]00[0R]O-Q 0P - _ =/_" (5.19)
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Solving Eq. (5.19), similar to Eq. (5.9), for (OQ/OP) and using it with Eq. (5.17) yields

the sensitivities of the objective function to the problem parameters.

Altematively, the adjoint variable method can be used when the substitution of

Eq. (5.19) into Eq. (5.17) is performed. Then, an adjoint vector A, that satisfies the

following equation, is defined

jvA= [ OQ + k, OQ

where J = [Oft/O_)]. Substitution of Eq. (5.20) into Eqs. (5.17) and (5.19) gives,

dF op OF op _TOGa
- op + -o--fi-+ iv v (5.21)

The adjoint system of Eq. (5.20) is independent of any differentiation with respect

to the problem parameters. Also, both terms on the right hand side are available from

the calculations of Eqs. (5.6) and (5.7). The partial derivatives, OF°P/O[ 9, OGa/O[ 9 and

Off/OP can be evaluated analytically. Therefore, the sensitivity derivatives (Eq. (5.21))

are obtained after solving Eq. (5.20), evaluating the Lagrangian multipliers, and finally

performing the pertinent substitutions.

Since the number of problem parameters,/3, (equal to seven for the present example)

is greater than the number of the adjoint vectors, A, (equal to one for the present

example), the adjoint variable method is more economical [10] for the present example.

6. RESULTS OF DESIGN OPTIMIZATION

Prior to discussing the actual optimization results, a series of cases (Cases 6-10) will

be presented to demonstrate the flow prediction method in Section 6.1. Subsequently, the

optimized nozzle-afterbody shape (Cases 6, 11, and 12) will be introduced in Section

6.2.

6.1 Demonstration of Flow Prediction Method

Initially, the governing equations of the flow are solved to obtain the analysis for

a fiat ramp surface at a=10 ° (Case 6). Then the ramp is deflected in such a way that a

shock can be generated; a compression corner is formed at 38% length from the ramp

corner by turning the surface at an angle, 0, from the ramp surface (Fig. 23). CFD

analyses are performed for three values of 0:2.5 °, 5.0 °, and 10 ° (Case 7). Finally, the

flowfields for the above 0 values are predicted (Case 8) using the analysis for the flat

ramp surface, that is, 0=0 °. In other words, the =0 ° configuration (Case 6) is denoted by

(X_) in Eqs. 5.12-5.14, and any one of the 0 ¢ 0° configurations (Case 8) is denoted

by (.'_ + AXb). The flow of Case 6 over the ramp is free of shocks. However, flows
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containing compression shocks, due to ramp wall perturbation (0 ¢ 0°), are predicted

based on the shock-free flow.

Table 6.1 Distinguishing Features of Flow Prediction Cases

Deflection

Case Angle, 0 Flowfield Solution Method

6

7

8

9

10

0

2.5 °, 5 °, 10 °

2.5 °, 5 °, 10 °

o

o

Analysis

Analysis

Prediction based

on analysis of 0---0°

Prediction based

on analysis of 0=2.5 °

Prediction based

on prediction of 0=2.5 °

The pressure coefficient distributions along the ramp for the Cases 6, 7, and 8

are shown in Fig. 24. The analysis (Case 7) and the predicted (Case 8) results are

indistinguishable up to the compression comer. The compression comer shocks are also

predicted very well. As expected, discrepancies begin to appear for the larger 0 values,

i.e. larger design variable changes. Notice that a discontinuous physical phenomenon

(shock) is predicted based on a flow which does not have that phenomenon (shock-

free). The maximum deviation is only 2% for 0=2.5 ° , but it increases to 22% for

0=10 ° . These deviations can be attributed to the nonlinear nature of the shock. This is

a typical trend when a nonlinear problem is solved using a method which includes some

kind of local linearization. Therefore, it can be positively concluded that the prediction

method, due to truncation error, exhibits increasing inaccuracies as the deflection size,

A)( D, increases and eventually produces unacceptable solutions when the deflection

becomes too large.

An issue, which appeals to the curiosity is the success of the present prediction

method for the off-surface flow, particularly, when an existing change in a configuration

is enlarged; for example, predicting the flow for 0=5 ° when the flow of 0=2.5 ° is given.

Shown in Fig. 25 are three sets of density contours in comparison: the flow analysis of

0=2.5 ° , the flow predictions of 0=5.00 based on first the flow analysis of 0=2.5 ° (Case

9) and then the flow predictions of 0=2.50 (Case 10). Two points are noteworthy here.

First, Case 9 aims at predicting the flow due to an enlarged change (0 from 2.5 ° to

5.0°), but not predicting a new physical phenomenon; that is, the prediction method

is given a shock with which it begins. The comparison of this case with the analysis

is satisfactory, despite the fact that the shock is rather strong. Secondly, this figure
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illustratesthe feasibility and quality of the secondlevel predictionof Eq. 5.14. For
example,the predictionof 0=5 ° flowfield (Case 10) is based on the Case 8 prediction

for 0=2.5 °, which is based on Case 6 analysis. Since the truncation error occurs twice

and progressively during this process, although associated with smaller perturbations,

the agreement of Case 10 is slightly less successful than that of Case 9. Therefore,

it may be concluded that higher level predictions may be further used for coarse but

efficient estimates of highly perturbed shapes.

6.2 Shape Optimization of Nozzle-Afterbody

Three different and arbitrary shapes are chosen as the initial design shapes for the

ramp; namely, a fiat ramp surface at _=10 ° (Case 6), a concave surface with its axis

(the straight line connecting the corner point and the ramp endpoint) at a=25.7 ° (Case

11), and a convex surface with its axis at _=29.5 ° (Case 12). The slope of initial

ramp expansion is 35.0 ° for the concave shape and 23.5 ° for the convex shape. The

reason for starting the optimization from three different initial shapes is to determine

how close the resulting optimized ramp shapes are to each other. Ideally, they should

be identical irrespective of their initial shape, so that, the designer using this method

in the production mode can start with any shape that is convenient. Shown in Fig.

26 is the comparison of the optimum shapes of Cases 6, 11, and 12 along with their

initial shapes. The optimum shapes are almost identical for 70% of the surface and

show a small difference towards the tip. When the axis angles, a, of the optimum

shapes are compared, it can be seen that the difference between Cases 11 and 12 is

indistinguishable (less than 0.3%) and that of Case 6 differs from them by only 3%.

The effect of the shape optimization on the interior flowfield is just as pronounced

as it is on the surface properties. The Mach number contours of both initial and

optimum configurations of Case 6 are presented in Fig. 27. The expansion patterns are

significantly different. The rate of expansion is much higher inside the nozzle for the

optimum shape, which results in a higher Mach number and less underexpanded jet at

the nozzle exit plane. The consequence of this is evidenced in the shear layer, which

is thinner and has a smaller angle with the horizontal for the optimum shape. Also, the

expansion along the external part of the nozzle ramp is no longer predominantly in the

streamwise direction, but a significant portion is in the normal direction. This indicates

that cancellation of the cowl corner centered-expansion waves occurs at the optimized

ramp surface, which is a characteristic feature of bell-type nozzles.

Plotted in Fig. 28 are the histories of the objective functions, F, during the

optimization iterations (or commonly known as levels). The initial F value of Case

11 is the highest, and all three shapes converge to an optimum F value within 14

optimization iterations. Cases 6 and 12 have identical optimum F values to the fourth

significant digit, and that of Case 11 differs from them by less than 0.5%.
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The computationaltime for eachone of the shapeoptimizationcasesis about3.5
hours on the CRAY-YMP of Numerical AerodynamicSimulation (NAS) of NASA.
For example,Case6 requires180evaluationsof theobjectivefunction over the course
of 14 optimization iterations. At the end of each iteration, there is a CFD analysis
accompaniedwith the objectivefunctionevaluationfor the new improvedshape.This
meansthatCFDanalysisis performed14times,whereas,theflow predictioncalculation
is performed 166 times. Comparingthe computationaltimes of an analysis(,--,175
seconds)anda prediction(,-_18seconds),it caneasilybe realizedthat theaerodynamic
optimizationprocedureis moreefficientby employingthepresentpredictionmethod.

To demonstratetherelativeefficienciesof thepresentdesignoptimizationmethods,
Case11is solvedusingfive differentproceduresandtheir resultsaregivenin Table6.2.
In Procedure1,the sensitivitycoefficients,VF andVG, arecomputedby thetraditional
finite-differencemethod.In contrast,theyarecomputedby the sensitivityanalysis(SA)
approachin the rest of the procedures,i.e. Procedures2-5. The designvariablesin
Procedures1-3 are the local slopesat eachsurfacegrid point (47 of them), but they
are the Bezier control points (6 of them) in Procedures4 and 5. The third important
differencebetweenthe proceduresis the methodto solve the flow equations;all but
the last procedureemploy the traditional approximatefactorization(AF) methodand
thelast proceduresolvestheseequationsdirectly usingthe Newton's method.Finally,
Procedures3, 4, and5 employ theflow predictionmethod,but Procedures1 and2 use
the completeCFD analysesonly.

Themostefficientmethodis Procedure5 andit requires2.2 hoursof computingon
the CRAY-2 computerof NASA LangleyResearchCenter.The mosttime is required
by Procedure1, which usesall the traditional methods. The memory requirement
is of the sameorder of magnitudefor all procedures.Part of the reasonsfor such
disparity in computationalefficienciesmay easilybe understoodby inspectingthe last
two columnsof Table6.2. It is noteworthyto point out that Procedure2 requiresless
CFDanalysesthanProcedure1. This is dueto thevaluesof thesensitivitycoefficients,
which are obtainedmuch more accuratelywhen the sensitivity analysisapproachis
used.Consequently,theoptimizerprovidesaconvergedsolutionmuchquicker. Further
detailsof suchefficiency considerationsaregiven in [10-13].
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Table 6.2 Normalized Computational Times Required

by Different Aerodynamic Optimization Procedures

Optimization Procedure

Normalized No. of

Execution Required No. of CFD Approx. Flow

Time Memorey [MW] a Analyses Analyses

1) AF+slopes+FD 49.2

2) AF+slopes+SA 19.7

3) AF+slopes+SA 3.75

4) AF+Bezier+SA 2.04

5) Newton's+Bezier+SA 1.00 b

6.1 595 0

6.1 236 0

6.1 6 230

5.4 15 172

5.4 15 172

AF: Approximate Factorization

FD: Finite Difference for sensitivity

SA: Sensitivity Analysis for sensitivity coefficients

a grid size (41x53)
b cpu time = 2.2 hrs on Cray2
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_ [M_}int = l 665

81x65x41 GRID 1

Figure 4 Maeh number contours of the flow inside the rectangular duct preceding the
internal nozzle (Case 1).

[M_Jexl -- 6.0

97x65x41 GRID 1

97x25x41 GRID 2

97x25x41 GRID 3

Figure 5 Mach number contours of the external flow past the double corner pieceding
the cowl and the external nozzle (Case 1).
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(a)

(b)

Figure 6 Grids for two-dimensional computations with 20,305 cells: (a) fixed grid,

(b) flow adapted grid for Case 5.
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7 6.3

4.7 /
3.2

Figure 7 Pitot pressure contours in the internal nozzle and ramp region for an rl-

constant plane (Case 1).

Figure 8 Mach contours for an k-constant plane of the nozzle-afterbody (Case 1).
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Figure 10

1 I I I

0 1.0 2.0 3.0 4.0 5.0
L (in.)

Comparisons of computational and experimental [3] off-surface pitot pres-
sure (Case 1).

1.00
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Cp 0.50

0.25

0

Computation Experiment Station
o TI = 0.375 in.

............ _ TI = 2.250 in.

.......................... [] T1= 2.625 in.

' 0

I I I I

0 2.5 5.0 7.5 10.0
Surface length, s (in.)

Figure 11 Comparisons of computational and experimental [2] surface pressure coef-
ficients (Case 1).
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17

Figure 12

rliqCH CONTOURS MIr,I VALUE= 0.0000 rLqx: 2.9733

Mach number contours of Case 5 where the flow is overexpanded: (a)

solution on the fixed grid shown in Fig. 6a, (b) solution on the adapted grid

shown in Fig. 6b.

(b)
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Figure 15 Global mass conservation error for Cases 2 and 4.

0.002
0.004

0.006

0.008 ----.. '
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LOCAL MASS ERROR CONTOURS MAX: 0.01 MIN:0.001 DEL: 0.001

CASE 4

Figure 16 Local mass error due to mixing of species (Case 4).
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Figure 17 Contours of specific heat ratio: (a) Case 2, (b) Case 3.
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Figure 18 Mass fraction contours of Case 3: (a) Freon-12, (b) Nitrogen.
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Aerodynamic Shape Optimization Flowchart

Initial Design Variables X D

Problem Parameters

Evaluate

F , Gj,s

Approximate Flow
Analysis

_ [ Optimizer (ADS)

YES

INew X D

( = initial X D in lirst pass )

Flow Analysis (CFD)

(VUMXZ3)

1
Computing Sensitivity
Coefficients(Gradients)

VF, VG'j

using Sensitivity Analysis
Approach

Computing the
Sensitivity of

the Optimum_
Design w.r.t.P

YES

Figure 20 Flowchart of the aerodynamic shape optimization method.
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Assemble

_)R _)F °p _Gu _R _)F °p _)Ga

_l _' 0P ' _P 0Q 0Q _Q

_R c) F °p _Ga

_XD _XD _XD

Factorize( _R/O Q)T

Compute sensitivity coefficients

VF °p , VGa

using sensitivity analysis approarch

Compute the Lagrangian Multipliers ,V

_:-[(V_)T(v_.,,)]' (V_.)_vro_

Solve

;_j _ _-

Compute

di _ _i _ _P _

Figure 22 Flowchart of the adjoint variable method to determine the sensitivity deriva-

tives (post-optimization sensitivities).
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Axial Thrust Coefficient = 0.1157 _o/
5.2_

4.4_

36--

1 65 !

Flat Initial Ramp Shape
(a)

Axial Thrust Coefficient = 0.1524 o_

5 S _

Ibl
Optimized Ramp Shape

Figure 27 (a) Mach contours of the initial ramp shape (Case 6).

(b) Mach contours of the optimized ramp shape (Case 6).
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